সরলরেখার ভেক্টর সমীকরণ বলতে বোঝানো হয় এমন একটি সমীকরণ, যা একটি সরলরেখা বরাবর যেকোনো বিন্দুর অবস্থানকে প্রকাশ করে। সরলরেখার ভেক্টর সমীকরণে একটি প্রারম্ভিক বিন্দু এবং একটি দিক নির্দেশকারী ভেক্টর ব্যবহার করা হয়।
ধরা যাক, একটি সরলরেখা দিয়ে যাওয়া কোনো বিন্দু \( A(x_1, y_1, z_1) \) এবং সরলরেখাটির সাথে সমান্তরাল একটি দিক নির্দেশক ভেক্টর \( \vec{d} = ai + bj + ck \) রয়েছে। তাহলে, সরলরেখার উপর একটি যেকোনো বিন্দু \( P(x, y, z) \) এর অবস্থান নির্ণয় করা যাবে নিচের সমীকরণের মাধ্যমে:
\[
\vec{r} = \vec{a} + \lambda \vec{d}
\]
এখানে,
ধরা যাক, একটি সরলরেখার প্রারম্ভিক বিন্দু \( A(1, 2, 3) \) এবং দিক নির্দেশক ভেক্টর \( \vec{d} = 2i + 3j + 4k \)। তাহলে সরলরেখার ভেক্টর সমীকরণ হবে:
\[
\vec{r} = (1 i + 2 j + 3 k) + \lambda (2 i + 3 j + 4 k)
\]
এটি সরলীকরণ করলে পাই:
\[
\vec{r} = (1 + 2\lambda) i + (2 + 3\lambda) j + (3 + 4\lambda) k
\]
দ্বিমাত্রিক স্থানে, \( z \) উপাদান বাদ দিয়ে সরলরেখার ভেক্টর সমীকরণ লেখা যায়। যেমন, যদি একটি সরলরেখা দিয়ে যাওয়া একটি বিন্দু \( A(x_1, y_1) \) এবং একটি দিক নির্দেশক ভেক্টর \( \vec{d} = ai + bj \) থাকে, তাহলে সরলরেখার ভেক্টর সমীকরণ হবে:
\[
\vec{r} = (x_1 i + y_1 j) + \lambda (a i + b j)
\]
সরলরেখার ভেক্টর সমীকরণে একটি প্রারম্ভিক বিন্দু এবং একটি দিক নির্দেশক ভেক্টর ব্যবহার করে রেখার প্রতিটি বিন্দুর অবস্থান নির্ণয় করা যায়। এই সমীকরণ বিভিন্ন গণনায়, বিশেষ করে ত্রিমাত্রিক এবং দ্বিমাত্রিক জ্যামিতিতে, গুরুত্বপূর্ণ ভূমিকা পালন করে।
Read more